Copied to
clipboard

G = C42.409D4order 128 = 27

42nd non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.409D4, C42.158C23, (C4×D4).6C4, C4.54(C2×D8), C4(C4.D8), (C2×C4).131D8, C4(C4.10D8), C4.95(C4○D8), C4.D827C2, C4⋊D4.13C4, C42.99(C2×C4), C4.74(C2×SD16), C4.10D843C2, C4⋊C8.254C22, (C2×C4).117SD16, (C22×C4).232D4, C4⋊Q8.232C22, C4.55(D4⋊C4), C42.12C419C2, C41D4.124C22, C22.3(D4⋊C4), (C2×C42).202C22, C23.107(C22⋊C4), C2.12(C23.24D4), C22.26C24.12C2, C2.14(M4(2).8C22), (C2×C4⋊C8)⋊6C2, C4⋊C4.33(C2×C4), (C2×D4).28(C2×C4), C2.13(C2×D4⋊C4), (C2×C4).1229(C2×D4), (C2×C4).152(C22×C4), (C22×C4).224(C2×C4), (C2×C4).103(C22⋊C4), C22.216(C2×C22⋊C4), SmallGroup(128,272)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.409D4
C1C2C22C2×C4C42C2×C42C22.26C24 — C42.409D4
C1C22C2×C4 — C42.409D4
C1C2×C4C2×C42 — C42.409D4
C1C22C22C42 — C42.409D4

Generators and relations for C42.409D4
 G = < a,b,c,d | a4=b4=1, c4=a2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=a2bc3 >

Subgroups: 284 in 128 conjugacy classes, 54 normal (28 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C4×D4, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C22×C8, C2×C4○D4, C4.D8, C4.10D8, C2×C4⋊C8, C42.12C4, C22.26C24, C42.409D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C4○D8, M4(2).8C22, C2×D4⋊C4, C23.24D4, C42.409D4

Smallest permutation representation of C42.409D4
On 64 points
Generators in S64
(1 45 5 41)(2 46 6 42)(3 47 7 43)(4 48 8 44)(9 57 13 61)(10 58 14 62)(11 59 15 63)(12 60 16 64)(17 37 21 33)(18 38 22 34)(19 39 23 35)(20 40 24 36)(25 56 29 52)(26 49 30 53)(27 50 31 54)(28 51 32 55)
(1 18 50 57)(2 58 51 19)(3 20 52 59)(4 60 53 21)(5 22 54 61)(6 62 55 23)(7 24 56 63)(8 64 49 17)(9 41 34 27)(10 28 35 42)(11 43 36 29)(12 30 37 44)(13 45 38 31)(14 32 39 46)(15 47 40 25)(16 26 33 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 64 18 49 50 17 57 8)(2 7 58 24 51 56 19 63)(3 62 20 55 52 23 59 6)(4 5 60 22 53 54 21 61)(9 48 41 16 34 26 27 33)(10 40 28 25 35 15 42 47)(11 46 43 14 36 32 29 39)(12 38 30 31 37 13 44 45)

G:=sub<Sym(64)| (1,45,5,41)(2,46,6,42)(3,47,7,43)(4,48,8,44)(9,57,13,61)(10,58,14,62)(11,59,15,63)(12,60,16,64)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55), (1,18,50,57)(2,58,51,19)(3,20,52,59)(4,60,53,21)(5,22,54,61)(6,62,55,23)(7,24,56,63)(8,64,49,17)(9,41,34,27)(10,28,35,42)(11,43,36,29)(12,30,37,44)(13,45,38,31)(14,32,39,46)(15,47,40,25)(16,26,33,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,18,49,50,17,57,8)(2,7,58,24,51,56,19,63)(3,62,20,55,52,23,59,6)(4,5,60,22,53,54,21,61)(9,48,41,16,34,26,27,33)(10,40,28,25,35,15,42,47)(11,46,43,14,36,32,29,39)(12,38,30,31,37,13,44,45)>;

G:=Group( (1,45,5,41)(2,46,6,42)(3,47,7,43)(4,48,8,44)(9,57,13,61)(10,58,14,62)(11,59,15,63)(12,60,16,64)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,56,29,52)(26,49,30,53)(27,50,31,54)(28,51,32,55), (1,18,50,57)(2,58,51,19)(3,20,52,59)(4,60,53,21)(5,22,54,61)(6,62,55,23)(7,24,56,63)(8,64,49,17)(9,41,34,27)(10,28,35,42)(11,43,36,29)(12,30,37,44)(13,45,38,31)(14,32,39,46)(15,47,40,25)(16,26,33,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,18,49,50,17,57,8)(2,7,58,24,51,56,19,63)(3,62,20,55,52,23,59,6)(4,5,60,22,53,54,21,61)(9,48,41,16,34,26,27,33)(10,40,28,25,35,15,42,47)(11,46,43,14,36,32,29,39)(12,38,30,31,37,13,44,45) );

G=PermutationGroup([[(1,45,5,41),(2,46,6,42),(3,47,7,43),(4,48,8,44),(9,57,13,61),(10,58,14,62),(11,59,15,63),(12,60,16,64),(17,37,21,33),(18,38,22,34),(19,39,23,35),(20,40,24,36),(25,56,29,52),(26,49,30,53),(27,50,31,54),(28,51,32,55)], [(1,18,50,57),(2,58,51,19),(3,20,52,59),(4,60,53,21),(5,22,54,61),(6,62,55,23),(7,24,56,63),(8,64,49,17),(9,41,34,27),(10,28,35,42),(11,43,36,29),(12,30,37,44),(13,45,38,31),(14,32,39,46),(15,47,40,25),(16,26,33,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,64,18,49,50,17,57,8),(2,7,58,24,51,56,19,63),(3,62,20,55,52,23,59,6),(4,5,60,22,53,54,21,61),(9,48,41,16,34,26,27,33),(10,40,28,25,35,15,42,47),(11,46,43,14,36,32,29,39),(12,38,30,31,37,13,44,45)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4J4K4L4M4N8A···8P
order1222222244444···444448···8
size1111228811112···244884···4

38 irreducible representations

dim11111111222224
type+++++++++
imageC1C2C2C2C2C2C4C4D4D4D8SD16C4○D8M4(2).8C22
kernelC42.409D4C4.D8C4.10D8C2×C4⋊C8C42.12C4C22.26C24C4×D4C4⋊D4C42C22×C4C2×C4C2×C4C4C2
# reps12211144224482

Matrix representation of C42.409D4 in GL4(𝔽17) generated by

4000
0400
0010
0001
,
1000
0100
0001
00160
,
31400
3300
001414
00143
,
31400
141400
001414
00314
G:=sub<GL(4,GF(17))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[3,3,0,0,14,3,0,0,0,0,14,14,0,0,14,3],[3,14,0,0,14,14,0,0,0,0,14,3,0,0,14,14] >;

C42.409D4 in GAP, Magma, Sage, TeX

C_4^2._{409}D_4
% in TeX

G:=Group("C4^2.409D4");
// GroupNames label

G:=SmallGroup(128,272);
// by ID

G=gap.SmallGroup(128,272);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,184,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b*c^3>;
// generators/relations

׿
×
𝔽